References
MSj.builoto
This page lists all the documented elements of the MSj.jl
package covering all modules and submodules.
Contents
Main module
MSj.MSj
— ModuleMain module for msJ.jl
– A Julia package to load and process mass spectrometry data.
Types
Submodule with types and structures used to stored the data and dispatch to the right methods.
Data types
MSj.MScontainer
— Typeabstract type MScontainer end
Abstract type containing any imported data belongs to the MScontainer type.
MSj.MSscan
— Typestruct MSscan <: MScontainer
Data structure used to store individual mass spectrometry scans organized following the structure of mzXML files.
struct MSscan <: MScontainer num::Int # num rt::Float64 # retentionTime tic::Float64 # totIonCurrent mz::Vector{Float64} # m/z int::Vector{Float64} # intensity level::Int # msLevel basePeakMz::Float64 # basePeakMz basePeakIntensity::Float64 # basePeakIntensity precursor::Float64 # precursorMz polarity::String # polarity activationMethod::String # activationMethod collisionEnergy::Float64 # collisionEnergy end
MSj.MSscans
— Typestruct MSscans <: MScontainer
Data structure designed to store mass spectra obtained after filtering operation along with the history of these operation.
struct MSscans <: MScontainer num::Vector{Int} # num rt::Vector{Float64} # retentionTime tic::Float64 # totIonCurrent mz::Vector{Float64} # m/z int::Vector{Float64} # intensity level::Vector{Int} # msLevel basePeakMz::Float64 # basePeakMz basePeakIntensity::Float64 # basePeakIntensity precursor::Vector{Float64} # precursorMz polarity::Vector{String} # polarity activationMethod::Vector{String} # activationMethod collisionEnergy::Vector{Float64} # collisionEnergy s::Vector{Float64} # variance end
MSj.Chromatogram
— Typestruct Chromatogram <: MScontainer
Data structure used to retrieve chromatography data.
struct Chromatogram <: MScontainer rt::Vector{Float64} ic::Vector{Float64} maxic::Float64 end
Methods Types
MSj.MethodType
— Typeabstract type MethodType end
Type containing all the methods used for filtering the data.
MSj.BasePeak
— Typestruct BasePeak <: MethodType
Structure for multiple dispatching to retrieve base peak chromatogram.
MSj.TIC
— Typestruct TIC <: MethodType
Dispatching to retrieve total ion current chromatogram.
MSj.∆MZ
— Typestruct ∆MZ{argT <: Union{Real, AbstractVector{<:Real} }} <: MethodType
Structure for multiple dispatching to retrieve extracted ion current chromatogram around an m/z ± ∆mz value given by arg = [mz, ∆mz]
MSj.MZ
— Typestruct MZ{argT <: Union{Real, AbstractVector{<:Real} }} <: MethodType
Structure for multiple dispatching to retrieve extracted ion current chromatogram around for m/z in the range arg = [mz1, mz2].
MSj.SG
— Typestruct SG{argT <: Int} <: MethodType #Savinsky & Golay filtering
Structure for multiple dispatching to Savinsky & Golay filtering, providing the order, window size and derivative to be performed. Defaults values are provided in functions calls.
MSj.TBPD
— Typestruct TBPD{argT1 <: Symbol, argT2 <: Real} <: MethodType
Structure for multiple dispatching to Template Base Peak Detection centroiding, providing the shape of the template function, the resolution and threshold. Defaults values are provided in functions calls.
MSj.SNRA
— Typestruct SNRA{argT1 <: Real, argT2 <: Int} <: MethodType
Structure for multiple dispatching to Signal to Noise Ratio Analysis centroiding, providing the threshold value and the size of the region. Defaults values are provided in functions calls.
MSj.TopHat
— TypeTopHat{argT <: Int} <: MethodType
Structure for multiple dispatching to TopHat baseline correction. Region is used specify the dimention over which this operation performed
MSj.LOESS
— TypeLOESS{argT <: Int} <: MethodType
Structure for multiple dispatching to LOcally Weighted Error Sum of Squares regression (LOESS) baseline correction.
MSj.IPSA
— Typestruct IPSA{argT1 <: Int, argT2 <: Real} <: MethodType
Structure for multiple dispatching to iterative polynomial smoothing algorithm (IPSA) baseline correction.
Filters
MSj.FilterType
— Typeabstract type FilterType end
This type contains the structures for filtering the data.
MSj.RT
— TypeRT{argT <: Union{Real, AbstractVector{<:Real}, AbstractVector{<:AbstractVector{<:Real}} }}
This type contains the structures for filtering the data.
MSj.IC
— Typestruct IC{argT <: Union{Real, AbstractVector{<:Real} }} <: FilterType
Used for multiple dispatching to Template Base Peak Detection centroiding, providing the shape of the template function, the resolution and threshold. Defaults values are provided in functions calls.
MSj.Level
— Typestruct Level{argT <: Union{Int, AbstractVector{<:Int} }} <: FilterType
Used to dispatch filters to MS level.
MSj.Scan
— Type Scan{argT <: Union{Int, AbstractVector{<:Int} }} <: FilterType
Dispatch filter to scan num.
MSj.Polarity
— Typestruct Polarity{argT <: Union{String, AbstractVector{<:String} }} <: FilterType
Dispatch filter to polarity.
MSj.Activation_Method
— Typestruct Activation_Method{argT <: Union{String, AbstractVector{<:String} }} <: FilterType
Dispatch filter to activation methods
MSj.Activation_Energy
— Typestruct Activation_Energy{argT <: Union{Real, AbstractVector{<:Real} }} <: FilterType
Dispatch filter to activation energies.
MSj.Precursor
— Typestruct Precursor{argT <: Union{Real, AbstractVector{<:Real} }} <: FilterType
Dispatch filter to precursor.
Missing docstring for MSj.Isotopes
. Check Documenter's build log for details.
I/O
Module for importing and exporting data. Dispatch to specific methods according to the file extension
MSj.info
— Methodinfo(filename::String, verbose::Bool = false)
The function looks into an file and returns in an Array{String} containing the number of scans and the different scans described by their MS level, polarity and eventually the precursor m/z followed by the activation method and collision energy. Each entry is unique, which gives a summary of the input file. With verbose = true, the functions also returns the parentFile, msManufacturer, msModel, msIonisation, msMassAnalyzer, msDetector, software and dataProcessing if existing.
Example
julia> info("test1.mzXML")
4-element Array{String,1}:
"51 scans"
"MS1+"
"MS2+ 1255.5 CID(CE=18)"
"MS3+ 902.33 PQD(CE=35)"
julia> MSj.info("test1.mzXML", verbose = true)
12-element Array{String,1}:
"parentFile: test1_MSj_1.raw"
"msManufacturer: Thermo Finnigan"
"msModel: LTQ XL"
"msIonisation: ESI"
"msMassAnalyzer: ITMS"
"msDetector: unknown"
"software: Xcalibur, 2.6.0 SP3"
"dataProcessing: conversion, ReAdW 4.3.1(build Sep 9 2009 12:30:29)"
"51 scans"
"MS1+"
"MS2+ 1255.5 CID(CE=18)"
"MS3+ 902.33 PQD(CE=35)"
MSj.load
— Methodfunction load(filename::String)
Checks the file extension and calls the right function to load the mass spectra if it exists. Returns an array of MSj.MSscan where the individual mass spectra are stored.
Examples
julia> scans = load("test.mzXML")
51-element Array{MSj.MSscan,1}:
MSj.MSscan(1, 0.1384, 5.08195e6, [140.083, 140.167, 140.25, 140.333, 140.417, 140.5, 140.583, 140.667, 140.75, 140.833 … 1999.25, 1999.33, 1999.42, ....
MSj.retention_time
— Methodretention_time(filename::String)
Returns an array composed of the retention times of the individual mass spectra.
Examples
julia> retention_time("test.mzXML")
51-element Array{Float64,1}:
0.1384
0.7307
2.1379
....
MSj.chromatogram
— Methodchromatogram(filename::String, filters::FilterType...; method::MethodType=TIC())
Returns a structure holding the retention time (rt), the ion current (ic) and the maximum value (maxic) for all the mass spectra within the file. Alternatively, other options may be supplied such as method = MSj.BasePeak, which returns the base peak intensity, method = MSj.∆MZ([500,5]), which returns the ion current for the range mz = 500 ± 5, or method = MSj.MZ([200,1000]) which return the ion current in the range from m/z 200 to m/z 1000. The data may be filtered by ms level, precursor mass, activation methods, etc, using the arguments MSj.Level(N), MSj.Precursor(mz), MSj.Activation_Method("method")...
Examples
julia> rt, ic = chromatogram("test.mzxml")
([0.1384 … 60.4793], [4.74795e6 … 17.4918])
julia> rt, ic = chromatogram("test.mzxml", method = MSj.BasePeak() )
([0.1384 … 60.4793], [102558.0 … 1.23181])
julia> rt, ic = chromatogram("test.mzxml", method = MSj.∆MZ([500,5]) )
([0.1384 … 60.4793], [46036.6 … 14.2529])
julia> rt, ic = chromatogram("test.mzxml", method = MSj.MZ([200,1000]))
([0.1384 … 60.4793], [4.74795e6 … 17.4918])
MSj.average
— Methodaverage(filename::String, arguments::FilterType...; stats::Bool=true)
Returns the average mass spectrum container (MSscans) along with the sample standard deviation of the intensities with stats=true (default) for all the mass spectra within file. The data may be filtered by level, precursor mass, activation methods, etc, using the arguments MSj.Level(N), MSj.Precursor(mz), MSj.Activation_Method("method"), or any combination of these arguments.
Examples
julia> spectrum = average("test.mzxml")
MSj.MSscans([1, 2, 3 ....
julia> spectrum = average("test.mzxml", MSj.Level(1) )
MSj.MSscans([1, 4, 7, 10,
julia> spectrum = average("test.mzxml", MSj.Precursor(1255.5) )
MSj.MSscans([2, 5, 8, 11, ...
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD") )
MSj.MSscans([3, 6, 9, 12, 15,
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD"), MSj.Polarity("+"), MSj.RT([10,20]))
MSj.MSscans([9, 12, 15, 18], ...
mzXML
Interface to the mzxml file format
MSj.info_mzxml
— Functioninfo_mzxml(filename::String, info::Vector{String}, verbose::Bool=false)
Returns the information content of an mzXML file into a string. Verbosity is controlled by the verbose Boolean variable set by default to false.
MSj.load_mzxml_all
— Functionload_mzxml_all(filename::String)
Load an entire an mzxml file, and return the
MSj.load_mzxml
— Functionload_mzxml(filename::String, index::Int
Load from an mzxml file the scan num that match the input index
MSj.load_mzxml_spectrum
— Functionload_mzxml_spectrum(c::XMLElement)
From an XMLElement, returns the data into an MSscan.
MSj.retention_time
— Methodretention_time(msRun::XMLElement)
From an XMLE element returns the retention time.
Missing docstring for MSj.average(msRun::XMLElement, argument::Level{<:Int})
. Check Documenter's build log for details.
Missing docstring for MSj.average(msRun::XMLElement, argument::Level{<:AbstractVector})
. Check Documenter's build log for details.
Missing docstring for MSj.average(msRun::XMLElement, argument::Scan{<:Int})
. Check Documenter's build log for details.
Missing docstring for MSj.average(msRun::XMLElement, argument::Scan{<:AbstractVector})
. Check Documenter's build log for details.
Missing docstring for MSj.average(msRun::XMLElement, argument::Polarity{<:String})
. Check Documenter's build log for details.
Missing docstring for MSj.average(msRun::XMLElement, argument::Polarity{<:AbstractVector})
. Check Documenter's build log for details.
Missing docstring for MSj.average(msRun::XMLElement, argument::RT{<:Real})
. Check Documenter's build log for details.
Missing docstring for MSj.average(msRun::XMLElement, argument::RT{<:AbstractVector})
. Check Documenter's build log for details.
Missing docstring for MSj.average(msRun::XMLElement, argument::RT{<:AbstractVector{<:AbstractVector} } )
. Check Documenter's build log for details.
Missing docstring for MSj.average(msRun::XMLElement, argument::IC{<:AbstractVector})
. Check Documenter's build log for details.
Missing docstring for MSj.average(msRun::XMLElement, argument::Precursor{<:Real})
. Check Documenter's build log for details.
Missing docstring for MSj.average(msRun::XMLElement, argument::Precursor{<:AbstractVector})
. Check Documenter's build log for details.
Missing docstring for MSj.average(msRun::XMLElement, argument::Activation_Energy{<:Real})
. Check Documenter's build log for details.
Missing docstring for MSj.average(msRun::XMLElement, argument::Activation_Energy{<:AbstractVector})
. Check Documenter's build log for details.
Missing docstring for MSj.average(msRun::XMLElement, argument::Activation_Method{<:String})
. Check Documenter's build log for details.
Missing docstring for MSj.average(msRun::XMLElement, argument::Activation_Method{<:AbstractVector})
. Check Documenter's build log for details.
MSj.extracted_chromatogram
— Methodextracted_chromatogram(filename::String, indices::Vector{Int},method::MethodType)
Returns the extracted chromatogram for input file according to the selected method and for set of scan num as input
MSj.composite_spectra
— Methodcomposite_spectra(filename::String, indices::Vector{Int}, stats::Bool)
Returns the average MSscans for input filename and according to the input scan num. Calculation of variance is controlled by the stats Boolean variable.
Filtering
MSj.average
— Methodaverage(scans::Vector{MSscan}, arguments::FilterType...; stats::Bool=true)
Returns the average mass spectrum container (MSscans) along with the sample standard deviation of the intensities with stats=true (default) for all the mass spectra within the Array of mass spectrum container MSscan.. The data may be filtered by level, precursor mass, activation methods, etc, using the arguments MSj.Level(N), MSj.Precursor(mz), MSj.Activation_Method("method"), or any combination of these arguments.
Examples
julia> spectrum = average("test.mzxml")
MSj.MSscans([1, 2, 3 ....
julia> spectrum = average("test.mzxml", MSj.Level(1) )
MSj.MSscans([1, 4, 7, 10,
julia> spectrum = average("test.mzxml", MSj.Precursor(1255.5) )
MSj.MSscans([2, 5, 8, 11, ...
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD") )
MSj.MSscans([3, 6, 9, 12, 15,
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD"), MSj.Polarity("+"), MSj.RT([10,20]))
MSj.MSscans([9, 12, 15, 18], ...
MSj.chromatogram
— Methodchromatogram(scans::Vector{MSscan}, filters::FilterType...; method::MethodType=TIC())
Returns the retention time and the total ion current by default for all the mass spectra within the Array of mass spectrum container MSscan. Alternatively, other options may be supplied such as method = MSj.BasePeak, which returs the base peak intensity, method = MSj.∆MZ([500,5]), which returns the ion current for the range mz = 500 ± 5, or method = MSj.MZ([200,1000]) which return the ion current in the range from m/z 200 to m/z 1000. The data may be filtered by ms level, precursor mass, activation methods, etc, using the arguments MSj.Level(N), MSj.Precursor(mz), MSj.Activation_Method("method")...
Examples
julia> rt, ic = chromatogram("test.mzxml")
([0.1384 … 60.4793], [4.74795e6 … 17.4918])
julia> rt, ic = chromatogram("test.mzxml", method = MSj.BasePeak() )
([0.1384 … 60.4793], [102558.0 … 1.23181])
julia> rt, ic = chromatogram("test.mzxml", method = MSj.∆MZ([500,5]) )
([0.1384 … 60.4793], [46036.6 … 14.2529])
julia> rt, ic = chromatogram("test.mzxml", method = MSj.MZ([200,1000]))
([0.1384 … 60.4793], [4.74795e6 … 17.4918])
MSj.retention_time
— Methodretention_time(scans::Vector{MSscan})
Returns an array composed of the retention times of the individual mass spectra.
Examples
julia> retention_time("scans")
51-element Array{Float64,1}:
0.1384
0.7307
2.1379
....
MSj.average
— Methodaverage(scans::Vector{MSscan}, arguments::FilterType...; stats::Bool=true)
Returns the average mass spectrum container (MSscans) along with the sample standard deviation of the intensities with stats=true (default) for all the mass spectra within the Array of mass spectrum container MSscan.. The data may be filtered by level, precursor mass, activation methods, etc, using the arguments MSj.Level(N), MSj.Precursor(mz), MSj.Activation_Method("method"), or any combination of these arguments.
Examples
julia> spectrum = average("test.mzxml")
MSj.MSscans([1, 2, 3 ....
julia> spectrum = average("test.mzxml", MSj.Level(1) )
MSj.MSscans([1, 4, 7, 10,
julia> spectrum = average("test.mzxml", MSj.Precursor(1255.5) )
MSj.MSscans([2, 5, 8, 11, ...
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD") )
MSj.MSscans([3, 6, 9, 12, 15,
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD"), MSj.Polarity("+"), MSj.RT([10,20]))
MSj.MSscans([9, 12, 15, 18], ...
MSj.average
— Methodaverage(scans::Vector{MSscan}, arguments::FilterType...; stats::Bool=true)
Returns the average mass spectrum container (MSscans) along with the sample standard deviation of the intensities with stats=true (default) for all the mass spectra within the Array of mass spectrum container MSscan.. The data may be filtered by level, precursor mass, activation methods, etc, using the arguments MSj.Level(N), MSj.Precursor(mz), MSj.Activation_Method("method"), or any combination of these arguments.
Examples
julia> spectrum = average("test.mzxml")
MSj.MSscans([1, 2, 3 ....
julia> spectrum = average("test.mzxml", MSj.Level(1) )
MSj.MSscans([1, 4, 7, 10,
julia> spectrum = average("test.mzxml", MSj.Precursor(1255.5) )
MSj.MSscans([2, 5, 8, 11, ...
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD") )
MSj.MSscans([3, 6, 9, 12, 15,
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD"), MSj.Polarity("+"), MSj.RT([10,20]))
MSj.MSscans([9, 12, 15, 18], ...
MSj.average
— Methodaverage(scans::Vector{MSscan}, arguments::FilterType...; stats::Bool=true)
Returns the average mass spectrum container (MSscans) along with the sample standard deviation of the intensities with stats=true (default) for all the mass spectra within the Array of mass spectrum container MSscan.. The data may be filtered by level, precursor mass, activation methods, etc, using the arguments MSj.Level(N), MSj.Precursor(mz), MSj.Activation_Method("method"), or any combination of these arguments.
Examples
julia> spectrum = average("test.mzxml")
MSj.MSscans([1, 2, 3 ....
julia> spectrum = average("test.mzxml", MSj.Level(1) )
MSj.MSscans([1, 4, 7, 10,
julia> spectrum = average("test.mzxml", MSj.Precursor(1255.5) )
MSj.MSscans([2, 5, 8, 11, ...
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD") )
MSj.MSscans([3, 6, 9, 12, 15,
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD"), MSj.Polarity("+"), MSj.RT([10,20]))
MSj.MSscans([9, 12, 15, 18], ...
MSj.average
— Methodaverage(scans::Vector{MSscan}, arguments::FilterType...; stats::Bool=true)
Returns the average mass spectrum container (MSscans) along with the sample standard deviation of the intensities with stats=true (default) for all the mass spectra within the Array of mass spectrum container MSscan.. The data may be filtered by level, precursor mass, activation methods, etc, using the arguments MSj.Level(N), MSj.Precursor(mz), MSj.Activation_Method("method"), or any combination of these arguments.
Examples
julia> spectrum = average("test.mzxml")
MSj.MSscans([1, 2, 3 ....
julia> spectrum = average("test.mzxml", MSj.Level(1) )
MSj.MSscans([1, 4, 7, 10,
julia> spectrum = average("test.mzxml", MSj.Precursor(1255.5) )
MSj.MSscans([2, 5, 8, 11, ...
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD") )
MSj.MSscans([3, 6, 9, 12, 15,
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD"), MSj.Polarity("+"), MSj.RT([10,20]))
MSj.MSscans([9, 12, 15, 18], ...
MSj.average
— Methodaverage(scans::Vector{MSscan}, arguments::FilterType...; stats::Bool=true)
Returns the average mass spectrum container (MSscans) along with the sample standard deviation of the intensities with stats=true (default) for all the mass spectra within the Array of mass spectrum container MSscan.. The data may be filtered by level, precursor mass, activation methods, etc, using the arguments MSj.Level(N), MSj.Precursor(mz), MSj.Activation_Method("method"), or any combination of these arguments.
Examples
julia> spectrum = average("test.mzxml")
MSj.MSscans([1, 2, 3 ....
julia> spectrum = average("test.mzxml", MSj.Level(1) )
MSj.MSscans([1, 4, 7, 10,
julia> spectrum = average("test.mzxml", MSj.Precursor(1255.5) )
MSj.MSscans([2, 5, 8, 11, ...
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD") )
MSj.MSscans([3, 6, 9, 12, 15,
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD"), MSj.Polarity("+"), MSj.RT([10,20]))
MSj.MSscans([9, 12, 15, 18], ...
MSj.average
— Methodaverage(scans::Vector{MSscan}, arguments::FilterType...; stats::Bool=true)
Returns the average mass spectrum container (MSscans) along with the sample standard deviation of the intensities with stats=true (default) for all the mass spectra within the Array of mass spectrum container MSscan.. The data may be filtered by level, precursor mass, activation methods, etc, using the arguments MSj.Level(N), MSj.Precursor(mz), MSj.Activation_Method("method"), or any combination of these arguments.
Examples
julia> spectrum = average("test.mzxml")
MSj.MSscans([1, 2, 3 ....
julia> spectrum = average("test.mzxml", MSj.Level(1) )
MSj.MSscans([1, 4, 7, 10,
julia> spectrum = average("test.mzxml", MSj.Precursor(1255.5) )
MSj.MSscans([2, 5, 8, 11, ...
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD") )
MSj.MSscans([3, 6, 9, 12, 15,
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD"), MSj.Polarity("+"), MSj.RT([10,20]))
MSj.MSscans([9, 12, 15, 18], ...
MSj.average
— Methodaverage(scans::Vector{MSscan}, arguments::FilterType...; stats::Bool=true)
Returns the average mass spectrum container (MSscans) along with the sample standard deviation of the intensities with stats=true (default) for all the mass spectra within the Array of mass spectrum container MSscan.. The data may be filtered by level, precursor mass, activation methods, etc, using the arguments MSj.Level(N), MSj.Precursor(mz), MSj.Activation_Method("method"), or any combination of these arguments.
Examples
julia> spectrum = average("test.mzxml")
MSj.MSscans([1, 2, 3 ....
julia> spectrum = average("test.mzxml", MSj.Level(1) )
MSj.MSscans([1, 4, 7, 10,
julia> spectrum = average("test.mzxml", MSj.Precursor(1255.5) )
MSj.MSscans([2, 5, 8, 11, ...
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD") )
MSj.MSscans([3, 6, 9, 12, 15,
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD"), MSj.Polarity("+"), MSj.RT([10,20]))
MSj.MSscans([9, 12, 15, 18], ...
MSj.average
— Methodaverage(scans::Vector{MSscan}, arguments::FilterType...; stats::Bool=true)
Returns the average mass spectrum container (MSscans) along with the sample standard deviation of the intensities with stats=true (default) for all the mass spectra within the Array of mass spectrum container MSscan.. The data may be filtered by level, precursor mass, activation methods, etc, using the arguments MSj.Level(N), MSj.Precursor(mz), MSj.Activation_Method("method"), or any combination of these arguments.
Examples
julia> spectrum = average("test.mzxml")
MSj.MSscans([1, 2, 3 ....
julia> spectrum = average("test.mzxml", MSj.Level(1) )
MSj.MSscans([1, 4, 7, 10,
julia> spectrum = average("test.mzxml", MSj.Precursor(1255.5) )
MSj.MSscans([2, 5, 8, 11, ...
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD") )
MSj.MSscans([3, 6, 9, 12, 15,
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD"), MSj.Polarity("+"), MSj.RT([10,20]))
MSj.MSscans([9, 12, 15, 18], ...
MSj.average
— Methodaverage(scans::Vector{MSscan}, arguments::FilterType...; stats::Bool=true)
Returns the average mass spectrum container (MSscans) along with the sample standard deviation of the intensities with stats=true (default) for all the mass spectra within the Array of mass spectrum container MSscan.. The data may be filtered by level, precursor mass, activation methods, etc, using the arguments MSj.Level(N), MSj.Precursor(mz), MSj.Activation_Method("method"), or any combination of these arguments.
Examples
julia> spectrum = average("test.mzxml")
MSj.MSscans([1, 2, 3 ....
julia> spectrum = average("test.mzxml", MSj.Level(1) )
MSj.MSscans([1, 4, 7, 10,
julia> spectrum = average("test.mzxml", MSj.Precursor(1255.5) )
MSj.MSscans([2, 5, 8, 11, ...
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD") )
MSj.MSscans([3, 6, 9, 12, 15,
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD"), MSj.Polarity("+"), MSj.RT([10,20]))
MSj.MSscans([9, 12, 15, 18], ...
MSj.average
— Methodaverage(scans::Vector{MSscan}, arguments::FilterType...; stats::Bool=true)
Returns the average mass spectrum container (MSscans) along with the sample standard deviation of the intensities with stats=true (default) for all the mass spectra within the Array of mass spectrum container MSscan.. The data may be filtered by level, precursor mass, activation methods, etc, using the arguments MSj.Level(N), MSj.Precursor(mz), MSj.Activation_Method("method"), or any combination of these arguments.
Examples
julia> spectrum = average("test.mzxml")
MSj.MSscans([1, 2, 3 ....
julia> spectrum = average("test.mzxml", MSj.Level(1) )
MSj.MSscans([1, 4, 7, 10,
julia> spectrum = average("test.mzxml", MSj.Precursor(1255.5) )
MSj.MSscans([2, 5, 8, 11, ...
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD") )
MSj.MSscans([3, 6, 9, 12, 15,
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD"), MSj.Polarity("+"), MSj.RT([10,20]))
MSj.MSscans([9, 12, 15, 18], ...
MSj.average
— Methodaverage(scans::Vector{MSscan}, arguments::FilterType...; stats::Bool=true)
Returns the average mass spectrum container (MSscans) along with the sample standard deviation of the intensities with stats=true (default) for all the mass spectra within the Array of mass spectrum container MSscan.. The data may be filtered by level, precursor mass, activation methods, etc, using the arguments MSj.Level(N), MSj.Precursor(mz), MSj.Activation_Method("method"), or any combination of these arguments.
Examples
julia> spectrum = average("test.mzxml")
MSj.MSscans([1, 2, 3 ....
julia> spectrum = average("test.mzxml", MSj.Level(1) )
MSj.MSscans([1, 4, 7, 10,
julia> spectrum = average("test.mzxml", MSj.Precursor(1255.5) )
MSj.MSscans([2, 5, 8, 11, ...
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD") )
MSj.MSscans([3, 6, 9, 12, 15,
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD"), MSj.Polarity("+"), MSj.RT([10,20]))
MSj.MSscans([9, 12, 15, 18], ...
MSj.average
— Methodaverage(scans::Vector{MSscan}, arguments::FilterType...; stats::Bool=true)
Returns the average mass spectrum container (MSscans) along with the sample standard deviation of the intensities with stats=true (default) for all the mass spectra within the Array of mass spectrum container MSscan.. The data may be filtered by level, precursor mass, activation methods, etc, using the arguments MSj.Level(N), MSj.Precursor(mz), MSj.Activation_Method("method"), or any combination of these arguments.
Examples
julia> spectrum = average("test.mzxml")
MSj.MSscans([1, 2, 3 ....
julia> spectrum = average("test.mzxml", MSj.Level(1) )
MSj.MSscans([1, 4, 7, 10,
julia> spectrum = average("test.mzxml", MSj.Precursor(1255.5) )
MSj.MSscans([2, 5, 8, 11, ...
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD") )
MSj.MSscans([3, 6, 9, 12, 15,
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD"), MSj.Polarity("+"), MSj.RT([10,20]))
MSj.MSscans([9, 12, 15, 18], ...
MSj.average
— Methodaverage(scans::Vector{MSscan}, arguments::FilterType...; stats::Bool=true)
Returns the average mass spectrum container (MSscans) along with the sample standard deviation of the intensities with stats=true (default) for all the mass spectra within the Array of mass spectrum container MSscan.. The data may be filtered by level, precursor mass, activation methods, etc, using the arguments MSj.Level(N), MSj.Precursor(mz), MSj.Activation_Method("method"), or any combination of these arguments.
Examples
julia> spectrum = average("test.mzxml")
MSj.MSscans([1, 2, 3 ....
julia> spectrum = average("test.mzxml", MSj.Level(1) )
MSj.MSscans([1, 4, 7, 10,
julia> spectrum = average("test.mzxml", MSj.Precursor(1255.5) )
MSj.MSscans([2, 5, 8, 11, ...
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD") )
MSj.MSscans([3, 6, 9, 12, 15,
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD"), MSj.Polarity("+"), MSj.RT([10,20]))
MSj.MSscans([9, 12, 15, 18], ...
MSj.average
— Methodaverage(scans::Vector{MSscan}, arguments::FilterType...; stats::Bool=true)
Returns the average mass spectrum container (MSscans) along with the sample standard deviation of the intensities with stats=true (default) for all the mass spectra within the Array of mass spectrum container MSscan.. The data may be filtered by level, precursor mass, activation methods, etc, using the arguments MSj.Level(N), MSj.Precursor(mz), MSj.Activation_Method("method"), or any combination of these arguments.
Examples
julia> spectrum = average("test.mzxml")
MSj.MSscans([1, 2, 3 ....
julia> spectrum = average("test.mzxml", MSj.Level(1) )
MSj.MSscans([1, 4, 7, 10,
julia> spectrum = average("test.mzxml", MSj.Precursor(1255.5) )
MSj.MSscans([2, 5, 8, 11, ...
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD") )
MSj.MSscans([3, 6, 9, 12, 15,
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD"), MSj.Polarity("+"), MSj.RT([10,20]))
MSj.MSscans([9, 12, 15, 18], ...
MSj.average
— Methodaverage(scans::Vector{MSscan}, arguments::FilterType...; stats::Bool=true)
Returns the average mass spectrum container (MSscans) along with the sample standard deviation of the intensities with stats=true (default) for all the mass spectra within the Array of mass spectrum container MSscan.. The data may be filtered by level, precursor mass, activation methods, etc, using the arguments MSj.Level(N), MSj.Precursor(mz), MSj.Activation_Method("method"), or any combination of these arguments.
Examples
julia> spectrum = average("test.mzxml")
MSj.MSscans([1, 2, 3 ....
julia> spectrum = average("test.mzxml", MSj.Level(1) )
MSj.MSscans([1, 4, 7, 10,
julia> spectrum = average("test.mzxml", MSj.Precursor(1255.5) )
MSj.MSscans([2, 5, 8, 11, ...
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD") )
MSj.MSscans([3, 6, 9, 12, 15,
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD"), MSj.Polarity("+"), MSj.RT([10,20]))
MSj.MSscans([9, 12, 15, 18], ...
MSj.average
— Methodaverage(scans::Vector{MSscan}, arguments::FilterType...; stats::Bool=true)
Returns the average mass spectrum container (MSscans) along with the sample standard deviation of the intensities with stats=true (default) for all the mass spectra within the Array of mass spectrum container MSscan.. The data may be filtered by level, precursor mass, activation methods, etc, using the arguments MSj.Level(N), MSj.Precursor(mz), MSj.Activation_Method("method"), or any combination of these arguments.
Examples
julia> spectrum = average("test.mzxml")
MSj.MSscans([1, 2, 3 ....
julia> spectrum = average("test.mzxml", MSj.Level(1) )
MSj.MSscans([1, 4, 7, 10,
julia> spectrum = average("test.mzxml", MSj.Precursor(1255.5) )
MSj.MSscans([2, 5, 8, 11, ...
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD") )
MSj.MSscans([3, 6, 9, 12, 15,
julia> spectrum = average("test.mzxml", MSj.Activation_Method("PQD"), MSj.Polarity("+"), MSj.RT([10,20]))
MSj.MSscans([9, 12, 15, 18], ...
MSj.extracted_chromatogram
— Methodextracted_chromatogram(scans::Vector{MSscan}, indices::Vector{Int},method::MethodType)
Returns the extracted chromatogram for input Array of MSscan according to the selected method and for set of scan num as input
MSj.composite_spectra
— Methodcomposite_spectra(scans::Vector{MSscan}, indices::Vector{Int}, stats::Bool)
Returns the average MSscans for input Array of MSscan and according to the input scan num. Calculation of variance is controlled by the stats Boolean variable.
Extracting subsets
MSj.extract
— Methodextract(filename::String, arguments::FilterType...)
Search for scans matching the argument MS level and returns an array of matching MSscans otherwise returns an ErrorException: "No matching spectra found."
Examples
julia> sub_set = extract("test.mzxml")
6-element Array{MSj.MSscan,1}:
MSj.MSscan(1, 0.1384, 5.08195e6, [140.083, 140.167, 140.25, 140.333, 140.417, 140.5, 140.583, 140.667, 140.75, 140.833 … 1999.25, 1999.33, 1999.42, ....
julia> sub_set = extract("test.mzxml", MSj.Level(2) ) # extract MS/MS spectra
MSj.MSscan(2, 0.7307, 9727.2, [345.083, 345.167, 345.25, 345.333, 345.417, 345.5, 345.583, 345.667, 345.75, 345.833 … 1999.25, 1999.33, 1999.42, 1999.5, 1999.58 ....
MSj.MSscan(5, 4.3442, 12203.5, [345.083, 345.167, 345.25, 345.333, 345.417, 345.5, 345.583, 345.667, 345.75, 345.833 … 1999.25, 1999.33, 1999.42, 1999.5, 1999.58, ....
MSj.extract
— Methodextract(scans::Vector{MSscan}, arguments::FilterType...)
Search for scans matching the argument MS level and returns an array of matching MSscans otherwise returns an ErrorException: "No matching spectra found."
Examples
julia> scans = load("test.mzxml") # load mass spectra
6-element Array{MSj.MSscan,1}:
MSj.MSscan(1, 0.1384, 5.08195e6, [140.083, 140.167, 140.25, 140.333, 140.417, 140.5, 140.583, 140.667, 140.75, 140.833 … 1999.25, 1999.33, 1999.42, ...
julia> sub_set = extract(scans) # extract a sub_set without conditions returns the original data
6-element Array{MSj.MSscan,1}:
MSj.MSscan(1, 0.1384, 5.08195e6, [140.083, 140.167, 140.25, 140.333, 140.417, 140.5, 140.583, 140.667, 140.75, 140.833 … 1999.25, 1999.33, 1999.42, ....
julia> sub_set = extract(scans, MSj.Level(2) ) # extract MS/MS spectra
MSj.MSscan(2, 0.7307, 9727.2, [345.083, 345.167, 345.25, 345.333, 345.417, 345.5, 345.583, 345.667, 345.75, 345.833 … 1999.25, 1999.33, 1999.42, 1999.5, 1999.58 ....
MSj.MSscan(5, 4.3442, 12203.5, [345.083, 345.167, 345.25, 345.333, 345.417, 345.5, 345.583, 345.667, 345.75, 345.833 … 1999.25, 1999.33, 1999.42, 1999.5, 1999.58, ....
MSj.build_subset
— Methodbuild_subset(filename::String, indices::Vector{Int})
Returns a Vector of MSscan from the input file according to the scan num (indices).
MSj.build_subset
— Methodbuild_subset(scans::Vector{MSscan}, indices::Vector{Int})
Returns a Vector of MSscan according to the input scan num.
Process
Mass spectrum
MSj.smooth
— Methodsmooth(scan::MScontainer; method::MethodType=SG(5, 9))
Smooth the intensity of the input data and returns a similar structure.
Examples
julia> smoothed_data = MSj.smooth(scans)
MSj.MSscans(1, 0.1384, 5.08195e6, [140.083, 140.167, 140.25, 140.333, 140.417, 140.5, 140.583, 140.667, 140.75, 140.833 … 1999.25, 1999.33, 1999.42, ....
MSj.smooth
— Methodsmooth(scans::Vector{MSscan}; method::MethodType=SG(5, 9, 0))
Smooth the intensity of the input data and returns a similar structure.
Examples
julia> scans = load("filename")
julia> smoothed_data = MSj.smooth(scans)
6-element Array{MSj.MSscan,1}:
MSj.MSscan(1, 0.1384, 5.08195e6 .....
MSj.savitzky_golay_filtering
— Methodsavitzky_golay_filtering(scan::MSj.MScontainer, order::Int, window::Int, deriv::Int)
Savinsky and Golay filtering of mz and int data within the MSscan(s) container.
Missing docstring for MSj.smooth(scans::Vector{MSscan}; method::MethodType=SG(5, 9, 0))
. Check Documenter's build log for details.
MSj.centroid
— Methodcentroid(scan::MScontainer; method::MethodType=MethodType=SNRA(1., 100) )
Peak picking algorithm taking a MSscan or MSscans object as input and returning an object of the same type containing the detected peaks. Available algorithm are : Signal to Noise Ratio (SNR) and Template Based Peak Detection (TBPD). Default method is Signal to Noise Ratio Analysis (SNRA), with default threshold = 1.0 and region = 100.
Examples
julia> centroid(scans)
MSscans(1, 0.1384, 5.08195e6, [140.083, 140.167, 140.25, 140.333, 140.417, 140.5, 140.583, 140.667, 140.75, 140.833 … 1999.25, 1999.33, 1999.42, ....
Chromatogram
No functions yet. To be added.
Simulation
MSj.formula
— Functionformula(formula::String)
Private function that reads the input chemical formula and sorts the atoms. It returns a dictionary in which the different entries represent the atoms and the values are the number of times the atoms have been found in the formula.
MSj.masses
— Functionmasses(input::String)
Calculates the average, monoistopic and nominal masses for the chemical formula given as an input. The result is returned in a dictionary with the following entries: "Monoiotopic", Average" and "Nominal".
Examples
julia> masses("C254 H377 N65 O75 S6")
Dict("S" => 6,"C" => 254,"N" => 65,"H" => 377,"O" => 75)
Dict{String,Float64} with 3 entries:
"Monoisotopic" => 5729.6
"Average" => 5733.55
"Nominal" => 5727.0
masses(f::Dict{String,Int})
Calculates the average, monoistopic and nominal masses for the chemical formula dictionary, such as prodcued by MSj.formula. The result is returned in a dictionary with the following entries: "Monoiotopic", Average" and "Nominal".
Examples
julia> masses("C254 H377 N65 O75 S6")
Dict("S" => 6,"C" => 254,"N" => 65,"H" => 377,"O" => 75)
Dict{String,Float64} with 3 entries:
"Monoisotopic" => 5729.6
"Average" => 5733.55
"Nominal" => 5727.0
MSj.isotopic_distribution
— Functionisotopic_distribution(input::String, p_target::Real; charge::Int = +1, tau::Real = 0.1, Elements::Dict{String,Array{MSj.Isotope,1}} = MSj.Elements)
Calculates the isotopic distribution of input formula for which the overall probabilities equals p_target using the isospec algorithm. The charge state is entered as an optional argument. The peaks detection threshold tau is by default set to 10%.
Examples
julia> isotopic_distribution("C254 H377 N65 O75 S6", 0.5)
Dict("S" => 6,"C" => 254,"N" => 65,"H" => 377,"O" => 75)
9×15 Array{Union{Float64, Int, String},2}:
"Masses" "Probability" "12C" "13C" "32S" "34S" "33S" "36S" "14N" "15N" "16O" "18O" "17O" "1H" "2H"
5731.61 0.112302 252 2 6 0 0 0 65 0 75 0 0 377 0
5732.61 0.102878 251 3 6 0 0 0 65 0 75 0 0 377 0
5730.6 0.0814037 253 1 6 0 0 0 65 0 75 0 0 377 0
5733.61 0.0704028 250 4 6 0 0 0 65 0 75 0 0 377 0
5734.62 0.0383896 249 5 6 0 0 0 65 0 75 0 0 377 0
5733.6 0.0301637 252 2 5 1 0 0 65 0 75 0 0 377 0
5729.6 0.0293871 254 0 6 0 0 0 65 0 75 0 0 377 0
5734.61 0.0276323 251 3 5 1 0 0 65 0 75 0 0 377 0
``julia> isotopic_distribution("C254 H377 N65 O75 S6", 0.5, charge = +7)
Dict("S" => 6,"C" => 254,"N" => 65,"H" => 377,"O" => 75)
9×15 Array{Union{Float64, Int, String},2}:
"Masses" "Probability" "12C" "13C" "32S" "34S" "33S" "36S" "14N" "15N" "16O" "18O" "17O" "1H" "2H"
818.801 0.112302 252 2 6 0 0 0 65 0 75 0 0 377 0
818.944 0.102878 251 3 6 0 0 0 65 0 75 0 0 377 0
818.658 0.0814037 253 1 6 0 0 0 65 0 75 0 0 377 0
819.088 0.0704028 250 4 6 0 0 0 65 0 75 0 0 377 0
819.231 0.0383896 249 5 6 0 0 0 65 0 75 0 0 377 0
819.086 0.0301637 252 2 5 1 0 0 65 0 75 0 0 377 0
818.514 0.0293871 254 0 6 0 0 0 65 0 75 0 0 377 0
819.23 0.0276323 251 3 5 1 0 0 65 0 75 0 0 377 0
MSj.simulate
— Functionsimulate(I::Array{Union{Float64, Int, String}}, ∆mz::Real; model::Symbol=:gauss, Npoints::Int=1000)
From an isotopic distribution and a peak width returns a mass spectrum (MSScan). The number of points of the resulting mass spectrum is passed as an optional argument. Peak shape are :gauss (default), :lorentz, :voight.
Examples
julia> a = simulate(I, 0.4)
MSj.MSscan(1, 0.0, 30898.192348114364, [5727.102517458742 ..., "", "", 0.0)
Plots
MSj.plots
— ModulePlotting module for MScontainer data type (MSscan, MSscans and Chromatogram).
julia> plot(scans[1])
julia> plot(chr)
MSj.plots.normalisation
— Methodnormalisation(cr::MSj.Chromatogram)
Normalization function for plotting chromatograms in raltive intensity.
MSj.plots.normalisation
— Methodnormalisation(ms::MSj.MScontainer)
Normalization function for plotting mass spectra in relative intensity.
MSj.plots.scaling
— Methodscaling(cr::MSj.Chromatogram)
Scaling function to display retention times of chromatograms in minutes instead of seconds.
RecipesBase.apply_recipe
— Methodh(cr::MSj.Chromatogram; method = :relative)
Allows plotting directly chromatograms. The defaults relative intensity plotting may be changed by setting method = :absolute.
RecipesBase.apply_recipe
— Methodg(ms::MSj.MSscans; method = :relative)
Allows plotting directly mass spectra MSscans. The defaults relative intensity plotting may be changed by setting method = :absolute.
RecipesBase.apply_recipe
— Methodf(ms::MSscan; method = :relative)
Allows plotting directly mass spectra MSscan. The defaults relative intensity plotting may be changed by setting method = :absolute.
Utilities
Base overloaded
Base.:+
— Method+(a::MScontainer, b::MScontainer)
Addition of mass spectra elementwise.
julia> scans[1] - scans[2]
MSj.MSscans([1, 2], [0.1384, 0.7307]
Base.:-
— Method-(a::MScontainer, b::MScontainer)
Substraction of mass spectra elementwise. Negative scan num refers the 'b' MScontainer.
julia> a - b
MSj.MSscans([1, 4], [0.1384, 3.7578, -0.1384, -3.7578]...
Base.:/
— Method/(a::MSscan, N::Real)
Divide the intensity and the tic data of a MSscan by a number.
julia> scans[1] / 1.0e2
MSj.MSscan(1, 0.1384, 50819.5, [140. ....
Base.:/
— Method/(a::MSscans, N::Real)
Divide in the intenisty, tic and variance of a MSscans by a number.
julia> a / 1.0e2
MSj.MSscans(1, 0.1384, 50819.5, [140. ....
Base.:*
— Method*(a::MSscan, N::Real)
Multiply the intensity and the tic data of a MSscan by a number.
julia> scans[1] * 1.0e2
MSj.MSscan(1, 0.1384, 50819.5, [140. ....
Base.:*
— Method*(a::MSscans, N::Real)
Multiply in the intenisty, tic and variance of a MSscans by a number.
julia> a * 1.0e2
MSj.MSscans(1, 0.1384, 50819.5, [140. ....
Base.:*
— Method*(N::Real, a::MScontainer)
Commutation of multiplication of number with MSscontainer.
Base.:*
— Method*(a::MScontainer, b::MScontainer)
Multiplication of mass spectra elementwise.
julia> a * b
MSj.MSscans([2, 5], [0.7307, 4.344
Utility function
MSj.avg
— Methodavg(a::MScontainer, b::MScontainer)
Returns the average of the input mass spectra and compute the variance using an incremental Welford algorithm.
julia> MSj.avg(scans[1], scans[4])
MSj.MSscans([1, 4], [0.1384, 3.7578], ....
MSj.add_ion_current
— Methodadd_ion_current(x::AbstractArray, y::AbstractArray, a::Real, b::Real)
Returns sum the ion current (int) within the m/z range defined by the a and b input values.
MSj.num2pnt
— Methodnum2pnt(x::AbstractArray, val::Real)
General purpose utility function used to retrieve the index of an array for which the value is closest to the input.
MSj.savitzky_golay
— Methodsavitzky_golay(int::AbstractArray, order::Int, window::Int, deriv::Int)
Savinsky and Golay filter removes high frequency noise from data. Parameters: int::AbstractArray order::Int order of the polynomial window::Int length of the window, has to be an odd number deriv::Int the order of the derivative to be computed. Default = 0 leads to smoothing only.
MSj.extremefilt
— Methodextremefilt(input::AbstractArray, minmax::Function, region::Int)
Return the erosion or the dilation of the input over the region, which the size of the structuring element.
MSj.morpholaplace
— Methodmorpholaplace(input::AbstractArray, region::Int)
Perfoms morphological Laplacian of the input array, as defined by the addition of the dilatation and the erosion of the input array.
MSj.morphogradient
— Methodmorphogradient(input::AbstractArray, region::Int)
Perfoms morphological Gradient of the input array, defined by the difference between the dilatation and the erosion of the input array.
MSj.tophat
— Methodtophat(input::AbstractArray, region::Int)
Performs the Top Hat of the input Array, defined by the difference between the input and its morphological opening.
MSj.bottomhat
— Methodbottomhat(input::AbstractArray, region::Int)
Performs the Bottom Hat of the input Array, defined by the difference between the morphological closing of the input and the input.
MSj.opening
— Methodopening(input::AbstractArray, region::Int)
Performs the morphological opening of the input Array, which is the dilatation of the erosion of the input
MSj.closing
— Methodclosing(input::AbstractArray, region::Int
Performs the morphological closing of the input Array, which is defined as the erosion of the dilatation of the input.
MSj.erosion
— Methoderosion(input::AbstractArray, region::Int)
Performs the morphological erosion of the input, which is the minimum-filtering over the structuring element region.
MSj.dilatation
— Methoddilatation(input::AbstractArray, region::Int)
Performs the morphological dilatation of the input, which is the maximum-filtering over the structuring element region
MSj.convolve
— Methodconvolve(a::AbstractArray, b::AbstractArray)
Convolve arrays a and b using the Fourier transform algorithm.